
Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate over a CeO₂-SnO₂ Catalyst† T. M. Jyothi,^{*a} R. Rajagopal,^a K. Sreekumar,^b M. B. Talawar,^c S. Sugunan^b and B. S. Rao^{*a}

^aNational Chemical Laboratory, Pune-411 021, India ^bCochin University of Science & Technology, Cochin-682 022, India ^cHigh Energy Materials Research Laboratory, Pune-411 021, India

A CeO_2 (10%)-SnO₂ catalyst prepared by a co-precipitation method efficiently catalyses the transfer hydrogen reduction of a number of aromatic nitro compounds with hydrazine hydrate under mild conditions.

A wide variety of homogeneous as well as heterogeneous catalyst systems in combination with different hydrogen donors have been employed for selective functional group reductions.^{1,2} Transfer hydrogenation requires only mild conditions, offers enhanced selectivity and closed pressure systems involving hazardous hydrogen can be avoided.³ Reduction of aromatic nitro compounds to the corresponding amines is of immense industrial importance as they are widely used as intermediates for dyes, pharmaceuticals and agrochemicals. Joshi and Mukesh⁴ have found that phosphomolybdic acid can efficiently catalyze reduction of nitroaromatics to amines under mild conditions.⁴ Recently, Kumbhar *et al.*⁵ have employed an Fe₂O₃–MgO catalyst, prepared from an Fe–Mg hydrotalcite precursor, for selective reduction of nitroaromatics.

Scheme 1 Reduction of different aromatic nitro compounds with hydrazine hydrate over $CeO_2 - SnO_2$ catalyst.

Cerium oxide containing catalysts are well known for their redox properties owing to possible electron transfer process viz. Ce^{4+} to $Ce^{3+.6}$ In the heteropoly acid catalyzed reduction of aromatics, Johnstone *et al.*³ proposed from *in situ* IR, EPR, NMR and XPS studies, that Mo⁵⁺ species formed by the reduction of Mo⁶⁺ species are the active species which coordinate to the electron deficient nitro compounds. Here, we examine the use of a $CeO_2 - SnO_2$ catalyst J. Chem. Research (S), 1999, 674–675[†]

prepared by a coprecipitation method for the reduction of a number of nitroarenes employing hydrazine hydrate as a hydrogen donor.

The important physico-chemical characteristics of the catalyst are presented in Table 1. In the reduction of the nitro compounds no demethylation or dehalogenation was observed and C-Cl, C-CH₃ and C-OCH₃ bonds were unaffected by reduction. The versatility of this catalyst in this reaction is exemplified by the reduction of a number of aromatic substrates under mild conditions. Results are presented in Table 2. In the reduction of p-nitroacetophenone, the keto group is unaffected by reduction, the reaction yielding selectively p-aminoacetophenone. Interestingly, p-dinitrobenzene is regioselectively reduced to p-nitroaniline. The catalyst after filtration was washed several times with dichloromethane followed by thorough washing with distilled water, drying at 383 K and finally calcination in air, with the regenerated catalyst showing the same activity. However, recycling of the catalyst after each reaction did result in a decrease of nitrobenzene conversion

The basicity as well as the redox properties of this catalyst system must be playing a significant role in this reaction.

In conclusion, we have found that CeO_2-SnO_2 is an efficient catalyst for the selective reduction of nitro compounds. Similar metal oxides could be used to effect selective transfer hydrogenation reactions.

Experimental

Preparation and Characterization of the Catalyst.—10 g of CeO₂(10%)–SnO₂ catalyst was prepared by mixing 2.52 g of cerium nitrate, Ce(NO₃)₃ · $6H_2O$ and 20.93 g of SnCl₂ · $5H_2O$ in 150 ml deionised water, followed by adding 30 ml of 1:1 aqueous ammonia slowly with continuous stirring to a final pH of 10. The precipitate formed was washed several times with deionised water to remove chloride and nitrate anions. Finally the material was dried at 383 K for 12 h followed by powdering to a mesh size < 100 and calcination in air at 773 K for 6h. The catalyst was characterized by energy dispersive X-ray analysis, X-ray diffraction, surface area analysis (N₂ adsorption), mercury porosimetry and acidity–basicity measurements.⁷

Table 1Physico-chemical characteristics of the $CeO_2 - SnO_2^a$ catalyst

Surface area/m ² g ⁻¹	Pore volume/m $^3 g^{-1}$	XRD phase	Acidity ^b /mmol g ⁻¹			Basicity ^b /mmol g ⁻¹		
			W	М	S	W	М	S
107.8	0.30	SnO ₂	0.3	0.12		0.08	0.14	0.41

^a Catalyst activated at 773 K in air. ^bW, M and S indicate weak, medium and strong acid and basic sites, respectively.

* To receive any correspondence (*e-mail*: jyothi@cata.ncl.res.in). † This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (*S*), 1999, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (*M*). General Procedure for the Reduction of Different Aromatic Substrates with Hydrazine Hydrate.—Reduction of different aromatic nitro compounds was carried out in a round bottomed flask fitted with a reflux condenser. In a typical procedure, 100 mg of the catalyst prepared by the above method was suspended in a mixture

Table 2 Reduction of various aromatic nitro compounds using hydrazine hydrate as a hydrogen donor over CeO2-SnO2 catalyst⁶

Substrate	Yield(%)	Mp of product (lit. value ^d)/°C
Nitrobenzene	100	184 (184)(bp)
<i>p</i> -Nitrotoluene	92	39-44 (41-46)
o-Nitrotoluene	85	127–131 (128–131)
p-Chloronitrobenzene	96	69–71 (69–72)
<i>p</i> -Methoxynitrobenzene	87	57-59 (57-60)
<i>p</i> -Dinitrobenzene	85 ^b	146–149 (149–151)
<i>p</i> -Nitroacetophenone	79 ^c	103-106 (105-107)

^a Reaction conditions: substrate = 500 mg, catalyst = 100 mg, methanol = 15 ml and hydrazine hydrate = 4 ml.^b Mono amino compound (85%) and diamino compound (5%) are formed. ^cThe keto group is unaffected. ^dDictionary of Organic Compounds, Chapman & Hall, London, 6th edn., 1996, vol. 1-6.

of 500 mg of nitrobenzene and 15 ml methanol and heated to reflux. To this solution 4 ml of hydrazine hydrate was added dropwise for a period of 30 min. After 4 h, the catalyst was filtered off and the reaction mixture extracted with dichloromethane, and the products were isolated by column chromatography. Product identification was by ¹HNMR and GC-MS. In some cases gas chromatography (Shimadzu I5A) fitted with a SE30 column and FID was used to measure the product yield.

Received, 28th June 1999; Accepted, 4th August 1999 Paper E/9/05166J

References

- J. R. Kosak, Catalysis of Organic Reactions, Marcel Dekker, 1 Inc., New York, 1984.
- 2 R. L. Augustine, Heterogeneous Catalysis for the Synthetic Chemist, Marcel Dekker, Inc., New York, 1996.
- R. A. W. Johnstone, A. H. Wilby and I.D. Entwistle, Chem. 3 Rev., 1985, 85, 129.
- M. V. Joshi and D. Mukesh, J. Catal., 1997, 168, 273. 4
- P. S. Kumbhar, J. Sanchez Valente, J. Lopez and F. Figueras, 5 Chem. Commun., 1998, 535.
- 6
- M. P. Rosynek, *Catal. Rev.-Sci. Eng.*, 1977, **16**, 111. J. C. Wu, C. S. Chung, C. L. Ay and I. Wang, *J. Catal.*, 1984, 7 **87**, 98.